40 research outputs found

    Smart-phone based spatio-temporal sensing for annotated transit map generation

    Get PDF
    City transit maps are one of the important resources for public navigation in today's digital world. However, the availability of transit maps for many developing countries is very limited, primarily due to the various socio-economic factors that drive the private operated and partially regulated transport services. Public transports at these cities are marred with many factors such as uncoordinated waiting time at bus stoppages, crowding in the bus, sporadic road conditions etc., which also need to be annotated so that commuters can take informed decision. Interestingly, many of these factors are spatio-temporal in nature. In this paper, we develop CityMap, a system to automatically extract transit routes along with their eccentricities from spatio-temporal crowdsensed data collected via commuters' smart-phones. We apply a learning based methodology coupled with a feature selection mechanism to filter out the necessary information from raw smart-phone sensor data with minimal user engagement and drain of batt

    Unsupervised annotated city traffic map generation

    Get PDF
    Public bus services in many cities in countries like India are controlled by private owners, hence, building up a database for all the bus routes is non-trivial. In this paper, we leverage smart-phone based sensing to crowdsource and populate the information repository for bus routes in a city. We have developed an intelligent data logging module for smartphones and a server side processing mechanism to extract roads and bus routes information. From a 3 month long study involving more than 30 volunteers in 3 different cities in India, we found that the developed system, CrowdMap, can annotate bus routes wit

    ComfRide: A smartphone based system for comfortable public transport recommendation

    Get PDF
    Passenger comfort is a major factor influencing a commuter's decision to avail public transport. Existing studies suggest that factors like overcrowding, jerkiness, traffic congestion etc. correlate well to passenger's (dis)comfort. An online survey conducted with more than 300 participants from 12 different countries reveals that different personalized and context dependent factors influence passenger comfort during a travel by public transport. Leveraging on these findings, we identify correlations between comfort level and these dynamic parameters, and implement a smartphone based application, ComfRide, which recommends t

    Detecting mobility context over smartphones using typing and smartphone engagement patterns

    Get PDF
    Most of the latest context-based applications capture the mobility of a user using Inertial Measurement Unit (IMU) sensors like accelerometer and gyroscope which do not need explicit user-permission for application access. Although these sensors provide highly accurate mobility context information, existing studies have shown that they can lead to undesirable leakage of location information. To evade this breach of location privacy, many of the state-of-the-art studies suggest to impose stringent restrictions over the usage of IMU sensors. However, in this paper, we show that typing and smartphone engagement patterns can act as an alternative modality to sniff the mobility context of a user, even if the IMU sensors are not sampled at all. We develop an adversarial framework, named ConType, which exploits the signatures exposed by typing and smartphone engagement patterns to track the mobility of a user. Rigorous experiments with in-the-wild dataset show that ConType can track the mobility contexts with an average micro-F1 of 0.87 (±0.09), without using IMU data. Through additional experiments, we also show that ConType can track mobility stealthily with very low power and resource footprints, thus further aggravating the risk

    Prospective nutritional, therapeutic, and dietary benefits of camel milk making it a viable option for human consumption: Current state of scientific knowledge

    Get PDF
    For over five thousand years, people in Asia and Africa have known about the health benefits of camel milk. Thus, it is used not only as a food source but also as a medicine. The similarities between camel milk and human milk have been scientifically proven. Camel milk is unique among ruminant milk because it is high in vitamins C and E and low in sugar and cholesterol. Still, it contains a wide variety of beneficial minerals (including sodium, potassium, iron, copper, zinc, and magnesium), besides being rich in several nutrients, including monounsaturated and polyunsaturated fatty acids, serum albumin, lactoferrin, immunoglobulins, lysozyme and the hormone insulin. Because of these components, many medical professionals now recommend camel milk as a treatment for various human ailments. It has been demonstrated to be effective in treating gastrointestinal issues, Type 1 diabetes, and food allergies. As a bonus, camel milk has been utilized to cure autism, lower cholesterol, prevent psoriasis, heal inflammation, aid tuberculosis patients, boost the body's natural defences, and impede the spread of cancer cells. Those who have problems digesting lactose may still be able to tolerate it. Conversely, camel milk can also help reduce an excessively high bilirubin, globulin, and granulocyte count. Drinking camel milk does not affect the erythrocyte sedimentation rate, hemoglobin concentration, and leukocyte count. The proteins in camel milk have an adequate ratio of critical amino acids. Immunoglobulins, which fight disease, are contained inside, and their small size allows antigens to penetrate and boosts the immune system's efficacy. This article highlights the health benefits and medicinal uses of camel milk

    Donkey milk: chemical make-up, biochemical features, nutritional worth, and possible human health benefits - Current state of scientific knowledge

    Get PDF
    Milk and milk derivatives are widely consumed because of their high nutritional density. Donkey milk and milk products have been consumed since ancient times. The use of donkey milk in the human diet is gaining popularity. The abundance of antibacterial components and protective elements in donkey milk sets it apart from the milk of other animals. Like human milk, donkey milk has low fat, high lactose, and low casein/whey protein ratio. Donkey milk whey protein's anti-proliferative properties imply lung cancer treatment. Alpha-lactalbumin, a type of protein, has been found to have antiviral, anticancer, and anti-stress properties. Donkey milk, like human milk, includes a low amount of casein and a smaller quantity of beta-lactoglobulin than cow milk. Donkey milk is an alternative for newborns with cow milk protein allergy and lactose intolerance since it has a higher amount of lactose, improves palatability, and prevents allergies. Osteogenesis, arteriosclerosis therapy, cardiac rehabilitation, accelerated aging, and hypocholesterolemic diets are some areas where donkey milk is beneficial. Since it contains probiotic lactobacilli strains, fermented beverages can be made with donkey milk. Donkey milk moisturizes skin due to its high vitamin, mineral, and polyunsaturated fatty acid content. The chemical makeup and potential therapeutic benefits of donkey milk warrant additional research. This has led to a rise in interest in producing dairy goods derived from donkey milk. Donkey milk has been used to make cheese, ice cream, milk powder, and even some experimental useful fermented drinks. The present article summarises what we know about donkey milk's chemical makeup, biological functions, nutritional worth, and possible human health benefits

    Beneficial impacts of biochar as a potential feed additive in animal husbandry

    Get PDF
    In the last decade, biochar production and use have grown in popularity. Biochar is comparable to charcoal and activated charcoal because it is a pyrogenic carbonaceous matter made by pyrolyzing organic carbon-rich materials. There is a lack of research into the effects of adding biochar to animal feed. Based on the reviewed literature, including its impact on the adsorption of toxins, blood biochemistry, feed conversion rate, digestion, meat quality, and greenhouse gas emissions, adding biochar to the diet of farm animals is a good idea. This study compiles the most important research on biochar's potential as a supplement to the diets of ruminants (including cows and goats), swine, poultry, and aquatic organisms like fish. Biochar supplementation improves animal growth, haematological profiles, meat, milk and egg yield, resistance to illnesses (especially gut pathogenic bacteria), and reduced ruminant methane emission. Biochar's strong sorption capacity also helps efficiently remove contaminants and poisons from the animals' bodies and the farm surroundings where they are raised. Animal farmers are predicted to make greater use of biochar in the future. Biochar could potentially be of value in the healthcare and human health fields; hence research into this area is encouraged. The present review highlights the potential benefits of biochar as an additive to animal feed and demonstrates how, when combined with other environmentally friendly practices, biochar feeding can extend the longevity of animal husbandry

    Beneficial impacts of goat milk on the nutritional status and general well-being of human beings: Anecdotal evidence

    Get PDF
    Goats provide an essential food supply in the form of milk and meat. Goat milk has distinct qualities, but it shares many similarities with human and bovine milk regarding its nutritional and therapeutic benefits. Because of their different compositions, goat and cow milk products could have different tastes, nutrients, and medicinal effects. Modification in composition aid of goat milk determining the viability of goat milk processing methods. Comparatively, goat's milk has higher calcium, magnesium, and phosphorus levels than cow's or human milk but lower vitamin D, B12, and folate levels. Goat milk is safe and healthy for infants, the old, and healing ailments. Capric, caprylic, and capric acid are three fatty acids that have shown promise as potential treatments for various medical issues. Considering the benefits and drawbacks of goat milk over cow milk is essential; goat milk is more digestible, has unique alkalinity, has a better buffering capacity, and has certain medicinal benefits. Acidifying goat milk shrinks fat globules and makes protein friable (with less αs1-casein and more αs2-casein). Goat milk treats malabsorption illnesses because it has more short- and medium-chain triglycerides that give developing children energy. In wealthy countries, goat milk and its products—yoghurt, cheeses, and powdered goods—are popular with connoisseurs and persons with allergies and gastrointestinal issues who need alternative dairy products. A food product category containing fermented goat milk with live probiotic microbes appears promising nutritionally and medicinally. This article presents anecdotal evidence of the therapeutic effects of consuming goat milk for human health and its nutritional value

    Positive impacts of integrating flaxseed meal as a potential feed supplement in livestock and poultry production: Present scientific understanding

    Get PDF
    When it comes to food and fiber production, flaxseed (Linum usitatissimum) has been around the longest. Oil makes up over 41% of a flaxseed's total weight; of that, more than 70% is polyunsaturated. Protein, dietary fiber, α-linolenic acid (ALA), flaxseed gum, and many other beneficial compounds are abundant in flaxseed meal (FSM). There is as much as 30% crude protein in FSM. Therefore, FSM can serve as a source of excellent protein for livestock. FSM increases the efficiency and effectiveness of livestock and poultry farming. FSM can be used as an essential protein feed component in cattle and poultry farming, boosting production and profitability. Because it contains anti-nutritional ingredients such as cyanogenic glycosides, tannins, phytic acid, oxalic acid and an anti-vitamin B6 factor, the use of FSM in livestock and poultry diets is restricted. Animal nutritionists have recently shown a growing interest in reducing anti-nutritional elements and boosting FSM's nutritional value. Recently, fermented FSM has been used to feed cattle and poultry; hence its dietary benefits have not yet been fully assessed. The present article, therefore, addresses the chemical make-up, bioactive components, anti-nutritional aspects, and positive impacts of FSM in livestock and poultry production

    A Comprehensive Review on Equine Influenza Virus:Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies

    Get PDF
    Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV
    corecore